Cambridge International AS \& A Level

CANDIDATE NAME

CENTRE
NUMBER

\square CANDIDATE NUMBER

CHEMISTRY
Paper 3 Advanced Practical Skills 1
May/June 2022
2 hours
You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page,
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets []
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.
- Notes for use in qualitative analysis are provided in the
question paper.

For Examiner's Use	
1	
2	
3	
Total	

This document has 12 pages.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.
Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 Basic copper(II) carbonate contains both copper(II) carbonate, CuCO_{3}, and copper(II) hydroxide, $\mathrm{Cu}(\mathrm{OH})_{2}$. The ratio of these two components can be different in samples from different sources. This means that the formula of basic copper(II) carbonate can be written as $\mathrm{CuCO}_{3} \cdot \mathbf{x C u}(\mathrm{OH})_{2}$.

Both the carbonate and the hydroxide react with acids.

$$
\begin{gathered}
\mathrm{CuCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{gathered}
$$

You will determine the value of \mathbf{x} in a sample of basic copper(II) carbonate by reacting it with excess acid and measuring the mass of carbon dioxide given off.

FA 1 is basic copper(II) carbonate, $\mathrm{CuCO}_{3} \cdot \mathbf{x C u}(\mathrm{OH})_{2}$.
FA 2 is $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl .
(a) Method

- Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to transfer $25.0 \mathrm{~cm}^{3}$ of FA 2 into a conical flask.
- Weigh the flask with the acid. Record the mass.
- Weigh the container with FA 1. Record the mass.
- Carefully tip all of FA 1 into the acid in the conical flask. Swirl the contents of the flask and leave the flask to stand.
- Weigh the container with any residual FA 1. Record the mass.
- Calculate and record the mass of FA 1 added to the flask.
- Calculate and record the theoretical initial mass of flask + acid + FA 1.
- Swirl the flask occasionally. Weigh the flask and contents after approximately 5 minutes. Record the mass.

During this step you may wish to continue with Question 2 or Question 3.

- Calculate and record the mass of carbon dioxide given off during the experiment.

Results

I	
II	
III	
IV	

(b) Calculations
(i) Calculate the amount, in mol, of carbon dioxide given off in the reaction.

$$
\text { amount of } \mathrm{CO}_{2}=
$$

\qquad mol [1]
(ii) Calculate the amount, in mol, of copper(II) carbonate in the sample of FA 1 that you added to the flask.
amount of $\mathrm{CuCO}_{3}=$ mol

Hence calculate the mass of copper(II) carbonate in the sample of FA 1 that you added to the flask.
mass of $\mathrm{CuCO}_{3}=$
(iii) Calculate the mass of copper(II) hydroxide in the sample of FA 1 that you added to the flask.

$$
\begin{equation*}
\text { mass of } \mathrm{Cu}(\mathrm{OH})_{2}= \tag{1}
\end{equation*}
$$

(iv) Calculate the amount, in mol, of copper(II) hydroxide in the sample of FA 1 that you added to the flask.
amount of $\mathrm{Cu}(\mathrm{OH})_{2}=$ \qquad mol

Hence calculate the value of \mathbf{x} in the formula of basic copper(II) carbonate, $\mathrm{CuCO}_{3} \times \mathrm{xCu}(\mathrm{OH})_{2}$.
\qquad

$$
x=
$$

(c) In this determination you assume that hydrochloric acid is in excess.

Show, by calculation, that this assumption is correct.

2 In Question 1 you found the value of \mathbf{x} in the formula of basic copper(II) carbonate, $\mathrm{CuCO}_{3} \cdot \mathbf{x C u}(\mathrm{OH})_{2}$. You will now use another method to find the value of \mathbf{x}.

Copper(II) ions oxidise iodide ions to produce iodine.

$$
2 \mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{CuI}(\mathrm{~s})
$$

The amount of iodine produced can be found by titration with aqueous thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.

$$
2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})
$$

FA 3 contains $\mathrm{Cu}^{2+}(\mathrm{aq})$. It was made by reacting 10.40 g of $\mathrm{CuCO}_{3} \cdot \mathbf{x C u}(\mathrm{OH})_{2}$ with excess dilute sulfuric acid and making the solution up to $1.00 \mathrm{dm}^{3}$ with distilled water.
FA 4 is $0.100 \mathrm{moldm}^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
FA 5 is aqueous potassium iodide, KI.
FA 6 is starch indicator.

(a) Method

- Fill the burette with FA 4.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 3 into a conical flask.
- Rinse the $25 \mathrm{~cm}^{3}$ measuring cylinder with approximately $5 \mathrm{~cm}^{3}$ of FA 5 . Discard the solution used for rinsing.
- Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to add $15 \mathrm{~cm}^{3}$ of FA 5, an excess of KI, to the conical flask. The solution will turn brown because iodine is formed.
- Add FA 4 from the burette until the mixture changes to pale brown.
- Add approximately 10 drops of FA 6. The mixture will turn blue-black.
- Continue adding FA 4 from the burette until the blue-black colour disappears to leave an off-white solid. This is the end-point of the titration.
- Carry out a rough titration and record your burette readings in the space below.

The rough titre is \qquad cm^{3}.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record in a suitable form below, all your burette readings and the volume of FA 4 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, calculate a suitable mean value to be used in your calculations. Show clearly how you have obtained the mean value.
$25.0 \mathrm{~cm}^{3}$ of FA 3 required cm^{3} of FA 4. [1]

(c) Calculations

(i) Give your answers to (c)(ii), (c)(iii) and (c)(iv) to the appropriate number of significant figures.
(ii) Calculate the amount, in mol, of thiosulfate ions present in the volume of FA 4 you have calculated in (b).

$$
\text { amount of } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=
$$

\qquad
(iii) Use your answer to (c)(ii), and the equations for the reactions involved, to calculate the amount, in mol, of copper(II) ions present in $25.0 \mathrm{~cm}^{3}$ of FA 3.
amount of Cu^{2+} in $25.0 \mathrm{~cm}^{3}=$ \qquad mol Hence deduce the amount, in mol, of copper(II) ions present in $1.00 \mathrm{dm}^{3}$ of FA 3.

$$
\text { amount of } \mathrm{Cu}^{2+} \text { in } 1.00 \mathrm{dm}^{3}=
$$ mol

(iv) Use your answer to (c)(iii) to calculate the mass of copper(II) ions in $1.00 \mathrm{dm}^{3}$ of FA 3.
(v) The formula of basic copper(II) carbonate is $\mathrm{CuCO}_{3} \cdot x \mathrm{Cu}(\mathrm{OH})_{2}$.

Write an expression, including \mathbf{x}, for the mass of Cu^{2+} ions in one mole of $\mathrm{CuCO}_{3} \cdot \mathbf{x C u}(\mathrm{OH})_{2}$.

$$
\text { mass of } \mathrm{Cu}^{2+} \text { ions in one mole of } \mathrm{CuCO}_{3} \cdot x \mathrm{Cu}(\mathrm{OH})_{2}=
$$

(vi) The formula of basic copper(II) carbonate is $\mathrm{CuCO}_{3} \cdot \mathbf{x C u}(\mathrm{OH})_{2}$.

Write an expression, including \mathbf{x}, for the mass of one mole of $\mathrm{CuCO}_{3} \cdot \mathbf{x C u}(\mathrm{OH})_{2}$.
mass of one mole of $\mathrm{CuCO}_{3} \cdot x \mathrm{Cu}(\mathrm{OH})_{2}=$
(vii) The expression below links the masses of copper(II) ions in FA 3 and in one mole.
$\frac{\text { mass of } \mathrm{Cu}^{2+} \text { present in sample of FA 3 }}{\text { mass of } \mathrm{CuCO}_{3} \cdot \times \mathrm{Cu}(\mathrm{OH})_{2} \text { used }}=\frac{\text { mass of } \mathrm{Cu}^{2+} \text { in one mole of } \mathrm{CuCO}_{3} \cdot \mathbf{x C u}(\mathrm{OH})_{2}}{\left.\text { mass of one mole of } \mathrm{CuCO}_{3} \cdot \mathbf{C u (O H}\right)_{2}}$
Using this expression, show how you could determine the value of \mathbf{x} in the formula of basic copper(II) carbonate, $\mathrm{CuCO}_{3} \times \mathrm{xCu}(\mathrm{OH})_{2}$.

Qualitative analysis

For each test you should record all your observations in the spaces provided.
Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.
Where no change is observed you should write 'no change'.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests should be attempted.

3 (a) FA 7 is a sample of basic copper(II) carbonate.
Place a small spatula measure of FA 7 into a hard-glass test-tube and heat the tube, gently at first and then more strongly.
Record all your observations.
\qquad
\qquad
\qquad
\qquad
(b) FA 8 is an aqueous solution containing Cu^{2+} ions.
(i) Carry out the following tests using a 1 cm depth of FA 8 in a test-tube for each test. Record your observations.

Table 3.1

test	
Test 1 Add a 1 cm depth of aqueous EDTA.	
Test 2 Add concentrated hydrochloric acid (CARE, corrosive) dropwise until no further change is seen.	
Test 3 Add a small spatula measure of metal \mathbf{M}. Leave the test-tube to stand.	

(ii) Suggest a possible ionic equation for the reaction between M and FA 8 in Test 3. Include state symbols.
\qquad
(c) Carry out tests to identify \mathbf{M}. Use only a small spatula measure of \mathbf{M}. Do not use concentrated hydrochloric acid in your tests.
(i) Record the tests you carry out and the observations you make, in a table, in the space below.
(ii) From your observations in (c)(i), identify M.
(d) FA 9 and FA 10 are sodium compounds that contain either a halide or a carbonate.

Carry out tests to confirm the identity of FA 9 and FA 10.
Record the tests you carry out, the observations you make and your conclusions in a table in the space below.

Qualitative analysis notes

1 Reactions of cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on warming	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is observed unless $\left[\mathrm{Ba}^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. unless $\left[\mathrm{Ca}{ }^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), $\mathrm{Cu}^{2+}(\mathrm{aq})$	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), $\mathrm{Mn}{ }^{2+}(\mathrm{aq})$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

anion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream/off-white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives pale yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; decolourises acidified aqueous KMnO_{4}
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids); gives white ppt. with high $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO_{4}
thiosulfate, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$	gives off-white/pale yellow ppt. slowly with H^{+}

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

4 Tests for elements

element	test and test result
iodine, I_{2}	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Faraday constant	$F=9.65 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
electronic charge	$e=-1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\mathrm{m}}=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at s.t.p. $(101 \mathrm{kPa}$ and 273 K$)$ $V_{\mathrm{m}}=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at room conditions
ionic product of water	$K_{\mathrm{w}}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\left(\right.$ at $\left.298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)\right)$
specific heat capacity of water	$c=4.18 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\left(4.18 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}\right)$

The Periodic Table of Elements

	$\stackrel{\infty}{\sim}$					岕 \times ¢	® 두니ํ	
	$\stackrel{\rightharpoonup}{*}$		のレ			®ット		
	\bullet		$\infty \bigcirc ⿳ 亠 丷 厂 彡$					
	$\stackrel{6}{\square}$		$\wedge \boldsymbol{Z}$ 耪号号	$\stackrel{\sim}{\sim}$			毋 ¢ ¢ 镸	
	\pm		－$\bigcirc \stackrel{\text { ¢ }}{\text { ¢ }}$			is ¢ ¢ $\stackrel{\substack{\infty \\ \sim}}{ }$		
	$\stackrel{\sim}{\square}$		$\bigcirc \sim \sim$	$\mathfrak{C l}$				을 气言
				$\stackrel{\sim}{\sim}$				
				F				표
				の			スも镸管	
				∞				
				\wedge		\％○－豪，		
				\bullet	İ \sim ¢	和		
				\llcorner		于 은 흘웅	～ロ	员 음 長
				－				
				m				
	\sim		$+\underset{\infty}{\infty}$					® ¢ ¢［
	－							

	®－
	$\stackrel{\sim}{\circ}$
	$\bar{\square}$
	ロッ
	®
	的㐫蒠
	®U旨
	ヵ安蒠
	¢ ${ }_{\text {¢ }}$
$\bar{\circ} \mathrm{E}$	$\circledast \frac{2}{z}$
	ゥ的亳
in co	

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

